Materials and Technology for Energy Efficient Lighting

Professor Matthew R. Phillips School of Physics and Advanced Materials University of Technology, Sydney Australia

University of Technology, Sydney

Architect Frank Gehry

UTS BUSINESS FACULTY

UTS Centre for: Materials and Technology for Energy Efficiency

AIM: To develop innovative, clean and inexpensive energy-saving technologies using advanced materials

Materials & Technology for Energy Efficiency

Electro-Chemical Energy Storage Prof Guoxiu Wang

Electro-Chemical Energy Storage Prof X Wang

Clean Energy Technologies

Advanced battery technologies for cars & smart electricity grid applications.

Rechargeable Li batteries, Li-air & Li-S batteries

Supercapacitor technology for high power applications

High surface area carbonaceous & tailored mesopore electrode materials

Hydrogen production and hydrogen storage

H production biomass & photocatalytic H₂O splitting, high capacity H storage materials

Hydrogen fed fuel-cell technologies

NanoPt catalysts for O reduction + H oxidation, polymer membrane proton conduction

Bio-fuel cell technology for biomedical application

Improvement of efficiency and lifetime of bio-fuel cells for implantation

Powertrain for electric car and hybrid electric car

Novel architecture design of electric vehicles (EVs)

Fundamental research on graphene

Large-scale synthesis of graphene material & applications for energy storage

Types of Electric Vehicles (EVs)

Plug-in Hybrid

Ford Escape HEV

Toyota Prius PHEV conversion

Tesla Roadster BEV

Honda FCX hydrogen FCV

Computational Modelling Prof Mike Ford

UTS Materials Computational Capabilities

Atomistic

Density functional theory (DFT) calculations of nanostructures, band structure, defect energies, thermodynamics

Density Matrix - divide and conquer DFT for very large numbers of atoms (millions !) Time-Dependent DFT Optical properties from first principles - band structure of entire nanoparticles and nanowires

Continuum or classical electromagnetism DDA, T-matrix, FDTD, nanostructure calculations

Computational Modelling

Nanoparticles

Courtesy of David Cortie

- structural, electronic & optical
- 10 nm = 10,000s of atoms

Macroscopic gold colloidal crystals

ZnO Nanowires

- Light emission / role of defects
- Transport properties
- Effect of strain

Harris, Ford et al Nanotechnology

18 (2007) 365301

IOP Publishing

Daylighting Physics Prof Geoff Smith

Daylighting Physics - Prof G Smith

Efficient Daylight Harvesting and Transport Optical and Materials Physics

Solar Tubes

Optimum Daylight Transmission Roofing for Sydney Olympic Stadium

Laminated glazing with LaB₆ nanoparticles in PVB layer

Fluorescent solar concentrators

Beam White Light from LEDs

Transparent Refractive Index Matched Micro-particles

SEMLAB New Materials Research Platform Technology Prof Milos Toth

SEMLAB - Prof M Toth

5 year Collaborative Research Program Between UTS and FEI Company, Oregon, USA

Enable real-time nano-scale imaging and correlative analysis of dynamic processes in a reactive gas environment

Completely new approach to materials research

SEMLAB

Simplified schematic of an *in-situ* environmental cell reaction chamber in a Scanning Electron Microscope

Observation at 1 nm resolution electron high vac beam VPSEM pole piece Heat to 1200°C chamber PLA Cool to -200°C SE detector lid 、 friction seal Any gas environment mating [≪]surfaces SE. In-situ chemical analysis bellows cell body cooling coils Nanoscale Deposition gas inlet gas outlet Nanoscale Etching stage sample, hot/cold stage cell base

UTS-FEI SEMLAB Research Capabilities

High Spatial Resolution Electron Beam Induced Deposition & Etching

Toth, Lobo, Knowles & Phillips, Nano Letters 7, 525 (2007)

Microstructural Analysis Unit Prof Matthew Phillips

Microstructural Analysis Unit

Microstructural Analysis Unit

Director Prof Matthew Phillips

Professional Officer-Operations Ms Katie McBean

Professional Officers Mr Mark Berkahn Dr Norman Booth Mr Jim Franklin Mr Geoff McCredie Dr Ric Wuhrer

Available MAU Research Equipment

Scanning Electron Microscopes (SEM) & X-ray EDS

- Zeiss Supra 55VP SEM with RAITH E-beam Lithography System & HKL EBSD
- FEI XL30 ESEM
- FEI Quanta 200 ESEM with Gatan MONOCL3 System
- JEOL 35CF SEM
- FEI Sirion FEG ESEM
- JEOL 35C SEM

SEM Accessories

Kleindiek Micromanipulators

Scanning Probe Microscopes (SPM)

- <u>Digital Instruments Dimension™ 3100 AFM and Bioscope</u>
- Digital Instruments Multimode SPM
- <u>Nanonics Near Field Scanning Optical Microscope (NSOM)</u>
- Nanosurf Easyscan STM

X-ray Diffraction (XRD)

<u>Siemens D5000 Diffractometer</u>

http://www.science.uts.edu.au/centres/mau

Spectroscopy

- Varian Cary Eclipse Fluorescence Spectrometer
- Perkin Elmer LS50 Luminescence Spectrometer
- Gatan MONOCL3 Cathodoluminescence System
- <u>Perkin Elmer Lambda 950 UV/VIS/NIR</u> <u>Spectrometer</u>
- Varian Cary 5E UV/VIS/NIR Spectrometer
- Ocean Optics SD2000 Diode Array Spectrometer
- J-Y Instruments Phase Modulated Ellipsometer
- •X-ray Photoelectron Spectroscopy (XPS)

Thin Film Coating Chambers

- Edwards EO6 Deposition System
- Denton DV502 Turbo Deposition System
- Dynavac CE12-14s Evaporation System
- <u>Shannon E-beam Evaporation System</u>

Sample Preparation and Processing

- Polishers
- •<u>Diamond saw</u>
- Spin coater

Microstructural Analysis Unit

Solid State Lighting Prof Matthew Phillips

Lighting essential for enhancing societies'

- productivity & prosperity
- health & well-being
- safety and security at night

Green Lighting Revolution

INEXPENSIVE, CLEAN & EFFICIENT LIGHTING

SOLID STATE LIGHTS

THE REVOLUTION HAS BEGUN!

LEDs are Everywhere

33

What is a Light Emitting Diode Solid State Light Source ?

The Light Emitting Diode (LED)

Semiconductor device that converts electricity into light

LED consists of a junction between n-type and p-type semiconductor layers

Luminous Efficacy (lm/W)

50 lm/watt

Luminous Efficacy (Im/watt) 300 Linear fluores-cent lamp 200 100 70 E Edison's light bulb (C filament) 40 30 20 Light-emitting diode (LED) 10 7 Compact fluorescent lamp Incandescent lamp (W filament) 1880 2015 Time and Technology

Incandescent	Linear	Compact	LED	LED	LED	
	Fluorescent	Fluorescent	(commercial)	(lab)	(theory)	
15 lm/W	90 lm/W	50 lm/W	130 lm/W	200 lm/W	350 lm/W	

Measuring Light Source Performance

LUMENS PER WATT

Lumen per Watt?

A Lumen is a measure of light output

A Watt is a measure of electrical energy = voltage x current

Lumen per Watt (efficacy) =

amount of visible light out for each Watt of energy used

Incandescent Light Bulb

Efficacy = 16 lumen per watt

100W bulb produces 1600 lumen60 W bulb produces 960 lumen

100W = 130 Candles

Theoretical Maximum Efficacy (lumen/Watt)

Conversion efficiency from electrical to optical power combined with conversion of optical power to lumen sensed by human eye

Incandescent Light Bulb is OUTLAWED in Australia from 2010

Energy Efficient Lighting Revolution has begun

Incandescent Light Bulbs Banned by Governments around the world

Argentina complete ban by 2011 Canada complete ban by 2012 Cuba complete ban by 2005 **United States** 100-watt bulbs in 2012 and all by 2014 Venezuela complete ban by 2005 complete ban by 2010 Philippines **European Union complete ban by 2012 Australia** complete ban by 2010 100-watt bulbs in 2015 and all by 2018 China

Incandescent Light Bulb - Highly Inefficient Bulb Efficacy = 16 lm/watt

20% World's Electricity Used for Lighting

Today's LED Solid State Lighting Technology is already

Ten times the **Efficacy** of Incandescent Bulbs Twice the **Efficacy** of CFLs

Ten time the **lifetime** of Incandescent Bulbs Five times the **lifetime** CFLs

Significant the power, cost savings and environmental benefits

Global Savings by SSL over 10 years

- ECONOMY Significant financial savings > 1,800 trillion dollars
- ENVIRONMENT Reduced Pollution
 > 10,000 mega-tonnes of CO₂
- **ENERGY -** Reduced Electricity Consumption
 - > 18,000 Terra-Whr
 - Eliminate the need for 280 power plants
 - 962.4 Million barrels crude oil

22 December 2008 / Vol. 16, No. 26 / OPTICS EXPRESS 21842

"Every 10 years the amount of light generated by an LED increases by a factor of 20, while the cost of per lumen falls by a factor of 10".

Haitz' Law suggests all lighting should become LEDs within a decade.

LEDs are the Future!

2002 USA Dept of Energy Solid State Lighting Technology Roadmap

TECHNOLOGY	SSL-LED 2002	SSL-LED 2007	SSL-LED 2012	SSL-LED 2020	Incande- scent	Fluore- scent
Luminous Efficacy (lm/W)	25	75	150	200	16	85
Lifetime (hr)	20,000	>20,000	>100,000	>100,000	1,000	10,000
Flux (lm/lamp)	25	200	1,000	1,500	1,200	3,400
Input Power (W/lamp)	1	2.7	6.7	7.5	75	40
Lumens Cost (\$/klm)	200	20	<5	<2	0.4	1.5
Lamp Cost (\$/lamp)	5	<5	<5	<3	0.5	5
Color Rendering Index (CRI)	75	80	>80	>80	95	75

Cree Industries announce 208 lm/W in lab Feb 3, 2010 10 years ahead of target

45000 2050 40000 35000 Rest of Asia Double by 2050 30000 China Africa 25000 (WA) Middle-East 20000 Europe 2010 S&C America 15000 North-America 10000 5000 n 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Power cost to surge in three years Clancy Yeates *March 20, 2010*

Electricity prices will jump by up to 60 per cent over the three years to 2012-13 Australia ~ \$0.18 kW.hr

LEDs are over 30 years OLD – What's New?

Fabrication of White Light LEDs -> 200 lumen/watt

HOW?

Nitride White LEDs Multichip RGB

- Very high colour control
- Theoretically best efficiency
- High Cost

Single blue chip + phosphor

blue (455nm) InGaN

Ce³⁺:YAG phosphor

- Lower colour control
- Lower efficiency (currently)
- Lower Cost

LED LAMPS

CLEAN & EFFICIENT

ALTERNATIVE to Energy Wasting Bulbs & CFLs

SOLID STATE LIGHTING

What's the hold up?

COST PER LUMEN

COST PER LUMEN

60 Watt Incandescent = 900 lumen @ 15 lumen/watt

900 lumen CFL Equivalent = 18 Watt @ 50 lumen/watt

US \$0.30 per kilolumen Lifetime 1000 hrs

US \$2 per kilolumen Lifetime 10,000hrs

WHITE LED COST PER LUMEN

US \$90 per kilolumen in 2010 US \$120 per kilolumen in 2006 US \$350 per kilolumen in 2003 US \$16 per kilolumen in 2015

Future Aim < US \$3 kilolumen

Reducing Cost per Lumen

Lower LED cost

Increase light output

Fabrication of LED devices is EXPENSIVE Will decrease as Fabrication Improves

250 nm ITO	electrode					
10 nm GaN:Mg 3x10 ²⁰ cm ⁻³	p ⁺⁺ contact layer					
200 nm GaN:Mg 5x10 ¹⁹ cm ⁻³	p-GaN					
40nm Al _{0.20} Ga _{0.80} N:Mg	electron blocking layer					
10x 3nm/15nm GaN/In _{0.15} Ga _{0.85} N MQW active region						
20x 3nm/3nm GaN/In _{0.05} Ga _{0.95} N transitional superlattice						
2 μm GaN:Si 2x10 ¹⁹ cm ⁻³	n-contact layer					
3μm undoped GaN						
Sapphire Substrate						

MOCVD Reactor

Complex man-made structures with typically 36 layers, including 20 x 3 nm quantum wells for spatial confinement of electrons & holes

Accurate control of In concentration and thickness is crucial

Increase Light output

IMPROVING LED EFFICIENCY

Current White LED Efficacy

90 lumen/watt (commercial) 208 lumen/watt (research lab) Theoretical Maximum ~325 lumen/watt

Internal Light Emission

Light Extraction

Phosphor Light Emission

LED-Phosphor Efficiency

Package Efficiency

60% - better semiconductors

70% - novel physics

90% - quantum dots

80% - better matched materials

80% - contacts & light scattering

LEDs "DARK" SECRET

Efficiency Droop

LEDs lose efficiency at higher drive currents

APRIL 2010 CREE XM LED Released

160 lumen/Watt at 350 mA

110 lumen/Watt at 2 A (770 lumen for 7 Watts)

Resolving droop is the key challenge in SSL

What Causes Efficiency Droop?

No one knows!

What Causes Efficiency Droop?

No one knows!

Current Explanations

- Inadequate carrier confinement in MQWs
- Electron overflow due polarization fields at MQW interfaces
- Auger recombination processes due to high carrier densities
- Saturation of local bands arising from In rich & poor regions
- Poor hole transport light generated only in top MQWs
- Efficient longitudinal optical phonon scattering Heating
- Carrier scattering with threading dislocations

UTS and Nanjing University

Australian Technology Network of Universities Australia/China NanoNetwork Collaboration

Professor Matthew Phillips UTS Director, Microstructural Analysis Unit Professor Chen Peng NU Director, Institute of Optoelectronics

Joint Doctoral Research Programs

Droop in InGaN/GaN multiple quantum well structures

Light Extraction

UTS Zinc Oxide Nanowires – Light Extraction

Transparent Conductive Oxide

Act as Optical Waveguides

Inexpensive

Similar Crystal Structure to GaN

Binary Oxide Nanowires – Light Extraction

WD mag det spot dwell

Threading Dislocations in Gallium Nitride

- High Quality GaN 2 μ m epilayers grown by MOCVD at ~ 900°C on Al₂O₃
- Significant lattice mismatch and thermal expansion coefficients between GaN and substrate
- Very high density (10⁸ 10¹⁰ cm⁻²) of TDs to relieve interface strain
- High performance LEDs despite high TD

TDs 2μm gallium nitride sapphire

UTS Cathodoluminescence top down view of TDs in GaN

- Threading dislocations act as highly localized non-radiative recombination centres which reduce light emission
- Higher dislocation density in Si doped GaN consistent with higher strain
- Dislocations decorate GaN domain grain boundaries leaving defect free GaN patches

SOLID STATE LIGHTING

APPLICATIONS

LED ENERGY EFFICIENCY but Wait There's More..... Additional LED Advantages

- Durable LED lifetime > 100,000 hrs ~ > 20 years
- Robust shock resistant

(Light bulb ~ 1,000 hrs)

- Compact
- No radiant heat cold emitter
- Light weight
- "instant" switch-on time
- Non-toxic mercury free
- Excellent control over colour or whiteness

City of Sydney LED Lighting Trial

Testing 250 LED Street Lights in Circular Quay, Martin Place, Alexandria and Darlinghurst

City of Sydney

20,000 street lights – electricity cost \$3.5M uses 13 Million kWhr, produces 1300 tonnes CO₂ & maintenance cost \$5M

LED Street Lighting 50% reduction

Australia Wide

2 million street lights, costs \$210 million, uses 1,035 Gigawatt hours (GWh) of electricity & produces 1.15 million tonnes of CO₂

Globally LED street lighting market estimated to grow from \$108M in 2008 to \$1 billion in 2011

LED Street Lighting

20 year Lifetime

Future of Solid State Lighting

Affordable, Safe and Efficient

Lighting in Developing Countries

Over 2 Billion People do not have access to electric lighting

Light up the world foundation (www.lutw.org)

LED - Solar- Battery technologies perfected matched for domestic lighting off the grid

Lighting off the Electricity Grid

Sustainable Solar Powered LED Lighting

South End Bondi Beach, Sydney, Australia

Lighting off the Electricity Grid

Deep Ultra-Violet LEDs

- UV LED application in:
- resin curing
- adhesion
- drying
- medical treatment
- chemical analysis
- photo catalysis
- water purification and sterilization.

Australian Government Australian Research Council

FEI COMPANY

JGLASS

Research Collaborators

THE AUSTRALIAN NATIONAL UNIVERSITY

UTS Research Team

Thank you for your attention

Collaboration

Contact:

Matthew.Phillips@uts.edu.au

www.science.uts.edu.au\mau

Additional Slides

ORGANIC LIGHT EMITTING DIODES OLEDS 60 lm/watt & 10,000 hrs **Flexible displays** Large area lighting

Cost \$25,000 per kilo-lumen

LED Heat Management

hot Light Ν Ρ HEAT HEAT Junction Resistance

cold

Heat Dissipation in Air

SOLID STATE LIGHTS

WHY THE BLING?

35

PHILIPS

Other Light Source Metrics

Ability of a light source to accurately reproduce colour

Colour Rendering Index (CRI)

Light Source	CRI
Sunlight	100
Incandescent Bulb	100
Fluorescent Light	60 - 85
LEDs	60 - 90
Sodium Vapour Lamp	40

Incandescent Bulb

Sodium Vapour Street Light

Other Light Source Metrics

Colour Temperature (K)

Measure of the colour of white light source

Serious Issues with Compact Fluorescent Lighting

CFL "Green" Technology????

Compact Fluorescence Lighting - Green?

Contains 4mg of highly toxic material Mercury

- Enough to contaminate 100,000 litres of water

Fragile and break easily

Emits significant dose of UV light

- skin cancer & eye damage.

Disposal of spent CFLs produces additional environmental issues - USA already dumps 500,000 fluoro tubes per year

Lifetime ~ 10,000 hours & Efficacy 50 lumen/watt

U.S. Environmental Protection Agency June 2010 Cleaning Up a Broken Compact Fluorescent Light Bulb

Before Cleanup: Air Out the Room

* Open a window and leave the room for 15 minutes or more

* Shut off the air conditioning system

Cleanup Steps for Hard Surfaces

*Carefully scoop up glass pieces and powder and place them in a glass jar with metal lid *Wipe the area clean with damp paper towels or disposable wet wipes. Place towels in the glass jar or plastic bag.

*Do not use a vacuum or broom to clean up the broken bulb on hard surfaces.

•Cleanup Steps for Clothing, Bedding and Other Soft Materials

* If clothing or bedding materials come in direct contact with broken glass or CFL powder from inside the bulb that may stick to the fabric, **the clothing or bedding should be thrown away.** Do not wash such clothing or bedding because mercury fragments in the clothing may **contaminate the machine and/or pollute sewage.**

Disposal of Cleanup Materials

 * Check with your local government about disposal requirements as some do not allow such trash disposal. Instead take broken and unbroken CFL bulbs to a local recycling center.
Future Cleaning of Carpeting or Rug: Air Out the Room During and After Vacuuming
*The next several times you vacuum, shut off air conditioning system and open a window.

LED Applications

LED Traffic Lights

80% of traffic lights are now LED- based

LEDs are 10 x more efficient than bulbs

Cost saving \$600 / year per intersection

Lifetime > 12 years no maintenance costs

Payback time 1 year

SOS Print + Media, Alexandria

Replaced 484 Fluorescent Tubes with LED Tube[™] Lights

Savings:

\$25,184 each year on electricity
149 tonnes of CO₂ emissions per year
Plus savings on maintenance costs

Return on investment in less than 2 years!

www.spectrumlighting.com.au

LED Brake Lights

High brightness – no colour filters

Highly Directional & long lifetime

Robust – impact resistant

No catastrophic failure – dimmer or one out in LED array

Instant on (100ns) old Globes ~250 ms

- 8 metres less stopping distance at 120 km/hr

Multiplier Effects – CFL (50 lm/Watt)

Average house in Australia has 20 light fittings

7 million homes in Australia 140 million light bulbs

Total Savings in Australia to 2020

30 terraWatt.hr & \$4,500 million dollars

\$28 million tonnes of CO₂ = 500,000 cars or one coal power station

www.climatechange.gov.au

New Building Design

Water Cube National Aquatic Centre

UNIVERSITY OF TECHNOLOGY SYDNEY

Beijing Olympic Games

10% reduction in global electricity usage = 2 x 10¹² kW.hr/yr

Energy, Environmental & Economic Savings

eliminate ~ 250 megatons of green house

Evolution of Lighting

Fire – Torches Prehistoric times

Spermaceti Candles From 1700

Oil Lamps 7000 BC to present

Arc Lamp From 1800

Gas Lamps From 1700

Kerosene Lamp From 1800

Carbon Filament Incandescent Bulbs 1880

Tungsten Filament Incandescent Bulbs 1910 > 1000hrs

Fluorescent tube From 1940s

Tungsten-Halogen 1970s whiter light

IVERSITY OF

INOLOGY SYDNEY

Compact Fluorescent Tube From 1980s

Solid State LED Light From 2010

Development of Ultra-High-Brightness InGaN/GaN-based Quantum Well LEDs

